If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(p^2)+6p+9=0
a = 1; b = 6; c = +9;
Δ = b2-4ac
Δ = 62-4·1·9
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$p=\frac{-b}{2a}=\frac{-6}{2}=-3$
| 2x−4=x+1 | | 5^3-10^2=x(8-2)+2x=3x | | (m^2)-11m=0 | | (s^2)-12s+20=0 | | (4x3)x(2x)=48 | | 7x−6=8x-27 | | a=(a+20)(a+5) | | 16x-38=17x-26 | | 3(z−12)−17=–11 | | (f^2)+29f=0 | | 26x+22=9x+1 | | x2−2=38 | | 2x+26=x+25=180 | | 2x+26=x+25=1280 | | 3x5x+10=180 | | −3x−12=−39 | | -7/2x+3/2=-3x-4/3 | | 1/4(8x-4)=1/3(12x+3) | | x^{2-}6x-27=0 | | 0.6y+1=1/4y-15 | | 7x-13+16x-38=90 | | 2x2−45=0 | | 15,860+20.75x=62.069+11.25x | | 0.90+0.05(18+x)=0.10(-110) | | 5(4)^x=675 | | 2(-4x+6)=3x+7 | | k/6.2+66.9=47.6 | | 0.10x+0.05(18-x)=0.10(16) | | 3(3x-4)=¼(35x+56) | | 2y=3(-4+6)+7 | | -33=x+13 | | 3x=20+5x+x=180 |